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Model-based software quality assurance (MB-SQA) provides a rigorous framework for 
the verification and validation of software systems through the systematic modeling and 
analysis of formal architecture representations.  This paper describes the results of applying 
an MB-SQA practice framework that utilizes the Architecture Analysis and Design 
Language (AADL) to JPL’s Mission Data System (MDS) reference architecture.  The MDS 
is a unified reference architecture for space mission flight, ground, and test systems.  In the 
case study, the AADL assurance practice framework and several AADL-based analyses were 
applied to the evaluation of critical quality attributes of the MDS reference architecture as 
well as an MDS adaptation for the control of a heated camera.  The results of the case study 
demonstrate the utility of the practice framework and the AADL-based analyses in 
addressing (1) the modeling of key MDS architectural themes and (2) quality assurance with 
respect to performance, particularly flow latency. 

Nomenclature 
AADL = Architecture Analysis and Design Language 
FOM = Figure of Merit 
IV&V = Independent Verification and Validation 
MB-SQA = Model-Based Software Quality Assurance 
MDS = Mission Data System 
OSATE = Open Source AADL Tool Environment 
SQA = Software Quality Assurance 
V&V = Verification and Validation 

I. Introduction 
hroughout software engineering literature, software quality assurance (SQA) typically refers to monitoring the 
software development process to ensure that the project is adhering to established development standards and 

procedures.  In other words, the high quality (read “quality” as an adjective) of a software system is assured through 
the rigorous enforcement of standards and procedures. 

However, SQA can also refer to ensuring that the software system has certain qualities (here, read “quality” as a 
noun), or, as referred to in the software architecture community, quality attributes.  These quality attributes are 
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indirectly measurable software system properties, such as maintainability, performance, and safety, desired by 
system stakeholders.  In order to ensure that a software system meets the quality attribute requirements set forth by 
the system stakeholders, software engineers must perform software quality assurance.   

This type of SQA is a critical, yet difficult task for embedded software systems, because (1) quality attributes 
need to be built into a system from the beginning and (2) quality attributes are indirectly measurable. 

First, quality attributes must be engineered into the software system through the employment of specific tactics, 
such as architecture styles, design patterns, or reference architectures.**   These tactics are selected to address a 
particular or several quality attribute(s) requirements and contribute to the overall architectural concept.  Second, 
quality attributes are indirectly measurable.  For example, there is no single measurement for “performance,” 
because performance is highly coupled to the functional requirements of the software system, the characteristics of 
the system within which the software is embedded, and the non-functional needs of the system stakeholders.  
Therefore, Figures of Merit, or FOMs, are usually defined, such as data transport latency, task execution time, and 
latency jitter, that quantify the quality attribute, in this case performance, with respect to this system context.  These 
FOMs provide software engineers with an indication of performance and system stakeholders with assurance that 
their concerns are being addressed.   

The architectural concept and quality attribute FOMs are documented as part of the software architecture and 
specified in an “architecture description document.”  Traditionally, the views that comprise an architecture 
description do not contain formal models that can be analyzed with respect to these FOMs.  The lack of rigorously 
specified software architecture description documents makes it extremely difficult for quality assurance personnel to 
determine whether or not an architecture has been constructed such that stakeholder quality concerns are addressed. 

These problems can be addressed through taking a model-based approach to SQA.  Model-based software 
quality assurance (MB-SQA) is the application of model-based engineering techniques (i.e., the use of formal 
abstractions and analyzable representations to perform typical engineering tasks) to the verification and validation of 
software architectures with respect to quality attributes.  Model-based engineering techniques utilize structured, 
graphical, implementation-independent notational systems for producing unambiguous documentation of system 
requirements and design, thereby providing the foundation for formal and effective software quality assurance.  
Using MB-SQA for both verification and validation (V&V) and independent verification and validation (IV&V), 
which are often employed at each phase of the embedded software system development lifecycle, provides software 
engineers with the capability to develop a thorough understanding of and insight into the critical characteristics of a 
system that are vital to its correct operation. 

This paper proposes an approach to MB-SQA that leverages the Society of Automotive Engineers (SAE) 
Architecture Analysis and Design Language (AADL) and Open Source AADL Tool Environment (OSATE).  It is 
proposed that these tools and associated practice framework can be employed in both the V&V and IV&V efforts of 
embedded software systems development to help ensure the achievement of stakeholder quality requirements.  This 
formal modeling language and supporting toolset were applied to representing and analyzing an adaptation of the Jet 
Propulsion Laboratory (JPL) Mission Data System (MDS) reference architecture for real-time embedded control 
systems, to evaluate the effectiveness and ease of applying this approach to a real system. 

Section 2 provides background on the AADL, the AADL assurance practice framework, and examples of the 
types of quality attribute analyses that can be performed by using AADL and the AADL assurance practice 
framework.  Section 3 presents an overview of the MDS reference architecture and observations on how MDS 
architectural themes relate to both AADL modeling techniques and model-based engineering of software systems in 
general.  Section 4 presents the case study used to illustrate the AADL assurance practice framework as well as the 
models that were developed for that case study.  The results of performing various analyses on these models are also 
presented.  Finally, Section 5 presents conclusions and future work. 

 
 

                                                        
**  An architecture style is a form or pattern of design with a shared vocabulary of design idioms and rules for using 
them.1  A design pattern is a commonly recurring structure of communicating components that solves a general 
design problem within a particular context.  A reference architecture an architectural pattern, or set of patterns, 
partially or completely instantiated, designed and proven for use in particular business and technical contexts, 
together with supporting artifacts to enable their use.2 
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II.  BACKGROUND 
This section provides necessary background information for understanding how the AADL is useful in 

performing MB-SQA and to understand the context for its application to the MDS reference architecture.  First, a 
brief overview of the AADL is presented.  Then, a summary of the AADL assurance practice framework is outlined.  
Finally, MDS and its architecture concepts are introduced. 

A. AADL 
The SAE AADL standard provides formal modeling concepts for the description and analysis of software system 

architectures in terms of distinct components and their interactions.3  The AADL includes software, hardware, and 
system component abstractions to (1) specify and analyze real-time embedded systems, complex systems-of-
systems, and specialized performance capability systems and (2) map software onto computational hardware 
elements.  The AADL is especially effective for model-based analysis and specification of complex real-time 
embedded systems.4  

Within the AADL, a component is characterized by its identity (a unique name and runtime essence), possible 
interfaces with other components, distinguishing properties (critical characteristics of a component within its 
architectural context), and subcomponents and their interactions.  In addition to interfaces and internal structural 
elements, other abstractions can be defined for component and system architectures.  For example, abstract flows 
can be identified and associated with specific components and interconnections to perform flow analyses.  These 
additional elements can be included through core AADL language capabilities and the specification of a 
supplemental annex language. 

The component abstractions of the AADL are separated into the three categories listed below.††  Figure 1 shows 
the AADL graphical representations of these component abstractions. 
Application Software: 
• Thread:  active component that can execute 

concurrently and be organized into thread groups 
• Thread Group:  component abstraction for 

logically organizing thread, data, and thread 
group components within a process 

• Process:  protected address space whose 
boundaries are enforced at runtime 

• Data:  data types and static data in source text  
• Subprogram:  concepts such as call-return and 

calls-on methods (modeled using a subprogram 
component that represents a callable piece of 
source code) 

Execution Platform (Hardware):  
• Processor:  schedules and executes threads 
• Memory:  stores code and data 
• Device:  represents sensors, actuators, or other 

components that interface with or are part of the 
physical environment  

• Bus:  interconnects processors, memory, and 
devices 

Composite:  
• System:  design elements that enable the integration of other components into distinct units within the 

architecture; they can consist of other systems as well as of software or hardware components 
AADL also includes several component interactions, which can be separated into the four categories listed 

below.  Figure 2 shows the AADL graphical representations of these component interactions. 
Port Connections: 
• Data Port:  interfaces for typed state data transmission among components without queuing 
• Event Port:  interfaces for the communication of events raised by subprograms, threads, processors, or 

devices that may be queued 
                                                        
†† Throughout the remainder of this paper, AADL component abstractions are indicated by capitalization.  AADL 
component instances in models are indicated by italics. 

 
Figure 1. AADL Component Abstractions 
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• Event Data Port:  interfaces for message 
transmission with queuing 

• Port Groups: a connection for a collection of ports 
or other port groups 

Component Access Connections: 
• Provides:  indicates that a component provides 

access to a data or bus component contained 
within it 

• Requires:  indicates that a component requires 
access to a shared data component or bus 
component that is external to it 

Subprogram Call Connections: 
• indicates the control flow of a call from the caller 

to the callee – both local and remote 
Parameter Connections: 
• indicates the flow of data from ports to 

subprogram parameters and between parameters of 
different subprogram calls 

The AADL standard includes runtime semantics for data exchange and control mechanisms including message 
passing, event passing, synchronized access to shared components, thread scheduling protocols, timing 
requirements, and remote procedure calls.  In addition, dynamic reconfiguration of run-time architectures can be 
specified using operational modes and mode transitions within the context of both software and hardware 
components.  For a full description of the AADL constructs please refer to Ref. 5. 

B. AADL Assurance Practice Framework 
The AADL assurance practice framework provides a foundation of processes, artifacts, methods, and tools used 

to perform MB-SQA during both V&V and IV&V activities.  Figure 3 presents an overview of the AADL assurance 
practice framework.  For a more detailed description of the AADL assurance practice framework please refer to Ref. 
6. 

As illustrated in Figure 3, the AADL assurance practice framework has three main activities:  Focus, Build, and 
Analyze.  These activities form an iterative process with continuous feedback flowing from one activity to the next.   

The Focus activity determines the components of the embedded software system that will be modeled and 
analyzed for quality assurance.  In many situations, it may not be desirable or feasible to develop full, detailed 

 
Figure 2. AADL Component Interactions 

 
 

Figure 3. AADL Assurance Practice Framework 
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models of the entire software system architecture.  Therefore, the Focus activity is driven by the critical issues 
identified by the system stakeholders (i.e., high risk quality requirements) and the analysis methods used to probe 
these issues.  The outputs of the Focus activity are a well-defined Analysis Plan and any necessary modifications to 
the V&V or IV&V Plan. 

The principal objective of the Build activity is to develop AADL models of the software system elements 
identified during the Focus activity.  A model is a full or partial representation of a software system element 
sufficiently detailed to support one or more focused analyses.  The initial steps in the Build activity involve 
referencing appropriate Analysis Guidelines (part of the AADL Analysis Repository) that define specific methods 
and identify tools for developing and analyzing models.  The output of the Build activity is the set of AADL models. 

The Analyze activity involves conducting detailed assessments of targeted aspects of the embedded software 
system using the models created during the Build activity.7  Different assessments often require different models.  
For example, a reliability assessment requires the use of a stochastic process model, while a scheduling assessment 
requires the use of a timing model.  Analysis Guidelines establish the requisite methods and steps for various types 
of analysis.  A unified architecture analysis model for each software system is maintained as part of the Analyze 
activity to ensure that the various analysis models accurately represent the same architecture.  Utilizing the 
extensibility of the AADL notation, this unified architecture analysis model is annotated with information relevant 
for different types of analysis, so that analysis models can be easily derived from one unified model of the software 
system, thereby reducing the analysis model validation step to the examination of the filters that generate the 
analysis models. 

The Analyze activity leverages OSATE, the Open Source AADL Tool Environment.8  OSATE is an extensible 
tool environment based on Eclipse that provides textual and graphical AADL editing support, semantic checking of 
AADL models, and translation of those models into XMI.  Several analysis tools are available that interface with 
OSATE.  Some of these, such as security and end-to-end latency analysis tools, operate directly on an instance of 
the AADL model.  Others interface with AADL models through filters that map relevant information from the 
AADL model into representations specific to the analysis tool, supporting activities such as network loading or fault 
tree analyses. 

Finally, it should be noted that the AADL assurance practice framework advocates the use of an AADL Analysis 
Repository, which consists of reference materials that support modeling and analysis for V&V and IV&V.  As 
shown in Figure 3, the repository consists of Analysis Guidelines, a Component Library, and Custom Property Sets.  
Analysis Guidelines provide V&V and IV&V personnel with supporting materials for (1) formulating analysis 
strategies, (2) establishing key parameters that should be considered, and (3) identifying specific analysis processes, 
methods, and tools for their particular application.  These guidelines are organized into viewpoints that address 
broad concerns associated with quality and other non-functional attributes of the target system as well as critical 
behavioral aspects.  The Component Library is a collection of AADL component type and implementation 
declarations that can be used to create analysis models for a target system.  These components are organized into 
hierarchical layers ranging from general components that can be used across an organization to specialized 
component variations required for a specific project.  The repository’s Custom Property Sets include specialized 
properties required for analyses.  These properties are integrated into analysis models through a built-in AADL 
capability that allows a user to define new properties and property types.  Initially, the content of the repository is 
general; however, during its use in a project or organizational context, the content of a repository evolves.  
Components and properties are added and / or modified, and new analysis techniques and tools are identified.   

C. The Mission Data System 
The JPL MDS project was initiated in April 1998.  The principal project objectives were “to define and develop 

an advanced multi-mission architecture for an end-to-end information system for deep-space missions” and “to 
address several institutional objectives: earlier collaboration of mission, system and software design; simpler, lower 
cost design, test, and operation; customer-controlled complexity; and evolvability to in situ exploration and other 
autonomous applications.”9  Figure 4 provides a conceptual diagram of the MDS reference architecture.   

MDS is a goal-based system, which is defined as a system in which all actions are directed by goals instead of 
command sequences. A goal is a constraint on a state variable over a time interval.10  Types of states include:  
dynamics, environment, device status, parameters, resources, data product collections, data management and 
transport policies, and externally controlled factors. 

In MDS, the hardware adapter receives information about the environment and the hardware itself from the 
sensors.  These measurements are used as evidence and are passed to a state estimator.  The state estimators use the 
evidence provided by the hardware adapter and the history of the states to estimate the current state of the system 
including an estimate of the uncertainty.  Operators express their intent in the form of goals declaring what should 
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happen, as opposed to low-level command 
sequences that dictate how the intent is to be 
achieved.  A Mission Planning and Execution 
function then elaborates and schedules these goals 
based on the current state of the system as 
determined by the state estimator.  The state 
estimates and elaborated goals are inputs to the 
state controllers, which issue appropriate 
commands to the hardware to achieve these goals.  
More detail on Goal Elaboration, Mission 
Planning, and Execution is provided in Ref. 10. 

The following subsection provides an 
overview of the key MDS architectural themes 
that motivate the state- and goal-based control 
approach described above.  The next section then 
provides a mapping between the MDS 
architectural themes and constructs and the 
approaches in AADL that will be used to model 
MDS. 

D. MDS Architectural Concepts 
The MDS architecture is based on a set of concepts that were developed to meet the needs of real-time embedded 

control systems given the unique characteristics of aerospace applications.  The MDS architectural concepts include: 
• Take an Architectural Approach:  Construct subsystems from architectural elements, not the other way 

around. 
• Ground-to-Flight Migration:  Migrate capability from ground to flight, where appropriate, to simplify 

operations. 
• State and Models are Central:  System state and models form the foundation for information processing. 
• Explicit Use of Models:  Express domain knowledge explicitly in models rather than implicitly in program 

logic. 
• Goal-Directed Operations:  Operate missions via specifications of desired state rather than sequences of 

actions. 
• Closed-Loop Control:  Design for real-time reaction to changes in state rather than for open-loop commands 

or Earth-in-the-loop control. 
• Resource Management:  Resource state usage is projected with models and checked against constraints. 
• Separate State Estimation from State Control:  For consistency, simplicity and clarity, separate state 

estimation logic from control logic. 
• Integral Fault Protection:  Fault protection must be an integral part of the design, not an add-on. 
• Acknowledge State Uncertainty:  State estimation must be honest about the evidence; state estimates are not 

facts.  State values are rarely known with certainty. 
• Separate Data Management from Data Transport:  Data management duties and structures should be 

separated from those of data transport. 
• Join Navigation with Attitude Control:  Navigation and attitude control must build from a common 

mathematical base. 
• Instrument the Software:  Instrument the software to gain visibility into its operation, not just during testing 

but also during operation. 
• Upward Compatibility:  Design interfaces to accommodate foreseeable advances in technology. 
For a deeper description and exploration of these architectural themes, please refer to Ref. 9.   

III.  Modeling MDS with AADL 
In order to effectively model the Mission Data System with AADL, it was necessary first to create a mapping 

between the MDS architectural themes and constructs, and the approaches used in AADL.  This mapping provides 
guidance in developing analysis strategies and approaches, identifying critical issues, and defining specific views 
and models for the MDS case study. 
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Figure 4. The MDS Reference Architecture 
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Take an Architectural Approach:  AADL is an architecture description language for real-time embedded 
systems, and therefore enables modeling of component-based systems with fully defined interfaces and interactions 
between components. 

Ground-to-Flight Migration:  AADL supports modeling the migration of capability from ground to flight by 
clearly separating the software architecture at the application layer from its deployment on a physical and compute 
platform. 

State and Models are Central:  In MDS, state variable values (estimates) have a single producer and multiple 
consumers, and therefore state information flows from a single producer to one or more consumers.  Consequently, 
state variables could be modeled in AADL as Data components that are accessed by producer and consumer tasks.  
In this representation, (1) information flow is reflected in the read and write access properties of the Data 
components, and (2) information transfer timing between a producer and consumer is implicit in the execution order 
of the producer and consumer tasks. 

However, in this work, another modeling strategy was employed.  AADL was specifically designed to model 
sampled state as signal streams in a closed-loop control system.  Therefore, AADL provides Data Ports for 
representing the state estimates to be communicated.  Furthermore, AADL provides Port connections that are used 
to express the flow of state information.  Through the use of AADL Data Ports and Port connections, mid-frame 
(immediate) and phase-delayed communications can be expressed to ensure deterministic sampling.  Deterministic 
sampling is important in order to maintain the stability of the control loops.  

MDS state variables can thus be represented as the outgoing Data Port of the producer task that is generating the 
state estimate.  Consumers (state estimators and state controllers) access state variables through Port connections to 
their incoming Data Port.  Desired communication timing is specified through the connection semantics.  By 
creating flow specifications of the individual components and the end-to-end system, V&V and IV&V personnel can 
annotate the flows with flow-related properties such as latency, data age, data accuracy and precision, and data miss 
rates for analysis purposes. 

Explicit Use of Models:  AADL is a formal language that supports rigorous modeling of systems as software and 
hardware components as well as their interactions. 

Goal-Directed Operations:  Goals in MDS are constraints on state over a time period.  AADL supports the 
modeling of goals through the use of sublanguage annexes that enable the creation of domain-specific annotations to 
the AADL model.   

Closed-Loop Control:  AADL supports the modeling of closed-loop, flow-oriented architectures through the use 
of Data Ports that represent state and connections that represent flow.  Deterministic flow is ensured through the use 
of mid-frame and phase-delayed connections.  In other words, measurements are available through “out” Data Ports 
of sensor hardware adapters and are passed to estimators via Data Port connections.  Data available to the estimator 
mid-frame is expressed by an immediate Data Port connection. 

Resource Management:  The execution platform components in AADL represent compute platform and physical 
resources.  User-defined properties enable V&V and IV&V personnel to characterize resource capacities and 
resource budgets.  The AADL concepts Processor, Memory, Bus, and Device define these resources as abstractions 
that include budget-based resource management.  

System power consumption can also be modeled in AADL.  With respect to MDS, power consumption can be 
addressed in two categories:  power consumption of (1) the physical plant in the system under control and (2) the 
compute platform in the control system.  The MDS Mission Planning and Execution function already focuses on 
power concerns of the physical plant.  If desired, AADL can also capture power requirements of the physical plant 
elements through power-related properties on physical components modeled through the AADL Device concept.  
AADL can then be used to characterize variations in power requirements through Modes and Mode-specific 
Properties and different deployment configurations for performing trades. 

The compute platform is represented in AADL as a resource on which the MDS application software is 
executed.  Specifically, the binding of the hardware adapter software to the underlying compute platform is 
explicitly modeled in AADL to determine processor utilization.   

Separate State Estimation from State Control:  The AADL Package concept allows users to organize and 
compartmentalize the modeling space for representing multi-layer, componentized architectures.  Consequently, 
state estimation can be modeled and packaged separately from the controllers that influence state. 

Integral Fault Protection:  AADL includes fault handling mechanisms as part of its execution semantics 
including Recovery Entry Points for threads, Error Event Ports for communicating with a health monitor, and Modes 
to represent various fault tolerant configurations.  AADL also has an Error Model Annex extension that permits 
users to abstractly characterize fault behavior and fault propagation in support of fault impact and isolation analysis 
as well as reliability and fault tree analysis.11 
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Acknowledge State Uncertainty:  AADL properties can be used to characterize the data represented in state 
variables including uncertainty characteristics. 

Separate Data Management from Data Transport:  AADL separates the logical flow of information through 
Data Ports from its deployment across both ground and flight compute platforms.  Furthermore, the management of 
data history can be abstracted into the specification of desired data goals with respect to the state variable history 
logging and transport. 

Join Navigation with Attitude Control:  Joining navigation with attitude control is captured in AADL models 
through the use of a common set of state data accessed by both navigation and attitude control components. 

Instrument the Software:  Instrumentation of software can be modeled in AADL through Properties associated 
with software model elements.  Alternatively, users can define AADL instrumentation patterns associated with 
model elements that are elaborated during model instantiation. 

Upward Compatibility:  AADL semantics allow the partial description of component interfaces so that they can 
be specialized within implementations or extensions.  Furthermore, Properties on these interfaces can be used to 
explicitly capture upward compatibility requirements. 

IV.  A Case Study 
This section presents the results of using the AADL assurance practice framework to perform MB-SQA on the 

Mission Data System.  First, the MDS reference architecture is modeled.  Then, an adaptation of the MDS reference 
architecture, namely the control of a heated camera, is modeled.  Finally, the MDS adaptation is analyzed with 
respect to flow latency, which provides an example of quality assurance with respect to performance in the V&V 
and IV&V context.  The graphical AADL representations shown throughout this section were developed in OSATE 
and are equivalent to the textual AADL representations. 

A. MDS Reference Architecture Model 
Figure 5 contains an AADL graphical description 

generated in OSATE of the MDS reference 
architecture.  This diagram contains the same 
information as Figure 4 albeit a formal instead of 
informal representation and at a higher level of 
abstraction. 

As seen in Figure 5, the AADL model is comprised 
of three top-level components, namely the 
MDSControlSystem, the MDSSystemUnderControl, 
and the MDSComputePlatform.  The 
MDSControlSystem and the MDSSystemUnderControl 
interact with one another by passing sensor 
measurements and actuator commands as well as 
measurement and command histories.  These 
interactions are depicted as connections between Port Groups to indicate that there may be a collection of 
connections between the two components.  The MDSComputePlatform interacts with the MDSSystemUnderControl 
through the DeviceBus that provides physical access to the sensors and actuators in the system under control.  In 
addition, the software components of MDSControlSystem are bound to hardware components of 
MDSComputePlatform via a binding Property (not shown in Figure 5). 

1. Modeling the Compute Platform 
Figure 6 contains a detailed AADL model of the MDSComputePlatform.  The MDSComputePlatform may 

include the flight system and / or the ground system as well as the connectivity between the two.  The 
MDSComputePlatform is connected to the MDSSystemUnderControl through the DeviceBus that provides physical 
access to the sensors and actuators in the system under control.  The MDS hardware adapters are mapped to the 
compute platform in a deployment configuration through the use of AADL binding properties. 

2. Modeling the System Under Control 
The MDSSystemUnderControl consists of the devices and hardware adapters that comprise the system under 

control, which are defined when the MDS reference architecture is adapted for a specific system.  Depending on the 
system being modeled, a single Device may represent the complete system under control.  In that case, “out” Data 
Ports represent sensors, whose data content are measurements, and “in” Data Ports represent actuators, whose data 

 
Figure 5. MDS Reference Architecture AADL Model 
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content are commands.  Each sensor or actuator can 
be modeled as a separate Device, including one or 
more Data Ports for measurements and / or 
commands. 

The AADL model of the MDS reference 
architecture consists of the hardware adapters, 
namely the SensorHardwareAdapters, which are 
responsible for converting sensor readings into 
measurements, and ActuatorHardwareAdapters, 
which are responsible for converting control 
commands into actuator commands.  Sensor 
readings are passed from the physical system to the 
hardware adapters in the MDSControlSystem and 
control commands are converted by the hardware 
adapters and passed to actuators in the physical 
system. 

Hardware adapters also maintain measurement 
and command histories and make them available to 
the StateEstimation component of the 
MDSControlSystem.  For a specific MDS 
adaptation, the generic Port Groups shown in these 
figures are refined to represent specific sensor 
measurements and actuator commands, state 
estimates, xgoals, and histories. 

3. Modeling the Control System 
Figure 7 presents the AADL model of the MDS control system.  As depicted in the conceptual view of the MDS 

reference architecture shown in Figure 4, the representation in Figure 7 depicts the major components of the 
MDSControlSystem, namely state estimation (StateEstimation), state control (StateControl), two components 
relating to execution (GoalMonitor and 
GoalExecutive), and two components 
related to planning (GoalPlanner and 
OperatorConsole).  

As shown in Figure 7, state estimators 
are represented by the StateEstimation 
Thread Group and controllers are 
represented by the StateControl Thread 
Group.  Bundling estimators and controllers 
as Thread Groups allows the refinement of 
each with a set of Threads that represent 
individual estimators and controllers.   

The Port Group StateEstimatesOut 
represents the results of estimation, i.e., the 
observed state of the system under control.  
This Port Group is refined using Data Ports, 
each Data Port representing the current 
value of an estimated state variable.  
Estimated state variables are used by the 
Thread Group StateControl.  Individual 
state estimators within the StateEstimation 
Thread Group may make use of each 
others’ state values.  The StateEstimation 
Thread Group is also responsible for 
maintaining a history log of the estimated 
states, which is made available through a 
separate Port Group EstimateHistoryOut.   

 
Figure 6. MDS Compute Platform 

 
 

Figure 7. MDS Control System 
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Above the interface with the system under control is the execution layer of the MDS reference architecture, 
which consists of the GoalMonitor and the GoalExecutive.  The GoalExecutive interprets a goal network, i.e., a 
mission plan, and passes executable goals to the controllers of the Thread Group StateControl.  The GoalMonitor 
compares the state estimation history to the executable goals to determine whether the controllers are able to achieve 
the goals or if replanning should be initiated.  The executable goals are represented by a Port Group that is refined in 
adaptations of the MDS reference architecture. 

The GoalPlanner and the OperatorConsole address the planning aspects of the MDS reference architecture.  The 
GoalPlanner is responsible for producing a goal network and replanning that goal network if the controllers are 
unable to achieve the goals within the goal network constraints.  The OperatorConsole provides status including 
telemetry such as measurement, state estimate, and command histories, and allows for mission planning inputs by 
human operators. 

4. Model Organization 
The AADL Package concept is used to organize the modeling space as 

illustrated in Figure 8.  All packages that comprise the MDS reference 
architecture model are included in one project 
(MDS_Reference_Architecture) in OSATE.  The Package MDSData 
contains all declarations of Port Group types and Data component types.  
The Data component types are used in Data Port declarations to specify the 
type of data communicated through these Ports. 

The Package SystemUnderControl contains the System declaration for 
the system under control.  The HardwareAdapters Package contains the 
Systems representing the sensor adapters and the actuator adapters.  The 
MDSControlSystem Package contains the MDS control system, while the 
components of the MDS control system, i.e., the state estimators, state 
controllers, goal executive, goal monitor, and goal planner, are declared in 
the ControlSoftware Package.  The elements of the compute platform are 
declared in the ExecutionHardware Package.  Finally, the top-level system 
is declared in the CompleteMDSSystem Package. 

In addition to the packages, an MDS reference architecture Property Set 
is also defined for modeling rate groups.  Other Property Sets can be 
similarly defined to analyze the MDS reference architecture with respect to 
other properties critical to MDS performance. 

B. MDS Adaptation Example 
In this section, AADL is used to refine the MDS reference architecture model described in the previous section 

into an MDS adaptation model.  AADL support for model refinement is used to accomplish this task.  The MDS 
reference architecture is adapted to represent a specific MDS system in a separate OSATE project as seen in Figure 
8, thereby enabling the independent development of multiple MDS adaptations.  The AADL support for nested 
package names enables refinement of the original MDS reference architecture packages into system specific 
packages. 

Individual components of the MDS reference architecture were refined by making use of the Extends construct.  
The Extends construct allows the declaration of a Port Group type, Component type, or Component implementation 
in terms of an existing type or implementation‡‡.  These declarations refine previously declared features and 
subcomponents.  The declarations can also be used to add subcomponents or features to the model.  Port Group type 
extensions were declared to fill in the details of the Port Groups defined in the MDS reference architecture.  
Component type extensions were also declared to refine feature classifiers to the adaptation-specific Port Group and 
Component classifiers.  Finally, component implementation extensions were declared that introduce specific 
instances of hardware adapters, estimators, controllers, goal executives, and goal monitors through subcomponent 
declarations. 

In this case study, the MDS reference architecture is adapted to the temperature control of a camera mounted on 
a fixed platform, which is a typical control problem on board a spacecraft.12  A diagram of the major components of 
the heated camera system is shown in Figure 9a.  In this example, a temperature signal that originates in the 
temperature sensor (modeled as an AADL Device) flows through the control system, which controls the actuation of 

                                                        
‡‡ For more information on the distinction between types, implementations, and instances please refer to Ref. 5. 

 
 

Figure 8. Model Organization 
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the camera heater’s power switch (also modeled as an AADL Device).  A conceptual block diagram of the heater 
controller with sensors and actuators is shown in Figure 9b. 

The camera hardware is modeled in AADL by refining the MDSSystemUnderControl component defined in the 
MDS reference architecture.  Temperature sensor and heater switches (seen in Figure 9b) are represented as separate 

Devices.  These Devices are physically 
connected to the Device Bus. The devices are 
connected to the hardware adapters, one for 
each sensor and actuator.  These adapters 
provide a logical connection to the 
MDSControlSystem through the refined 
MeasurementsOut and CommandsIn Port 
Groups.  These Port Groups have been refined 
to define the individual Data Ports used for 
communicating measurements and commands.   

The components of the MDSControlSystem 
are also refined for this example.  The MDS 
reference architecture has Thread Groups that 
represent collections of hardware adapters, 
estimators, controllers, goal executives, and 
goal monitors.  Figure 10 shows the Estimator 
and Controller Thread Groups of the MDS 
reference architecture with Port Group features 
defining their interface to other MDS control 
system components.  

 
 

Figure 10. Example MDS Reference Architecture Package 
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Figure 9. Fault-Tolerant Heated Camera Control System12 
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In the heated camera example, these 
Thread Groups are refined by creating 
individual Threads for each component 
within the group.  For example, in Figure 
11 the Estimator Thread Group in the 
MDS reference architecture is refined into 
TemperatureEstimator, 
TemperatureSensorHealthEstimator, and 
HeaterSwitchEstimator threads through 
defining an estimator.camera Thread 
Group implementation that contains 
instance declarations for the three 
Threads.  

For some system components in the 
MDS reference architecture, the 
refinement into the heated camera 
adaptation simply involves refining the 
classifiers from the generic classifiers of the reference architecture model to the heated camera system specific 
classifiers.  This is illustrated in Figure 11 by the refinement of the estimator Port Group features to refer to the 
camera-specific Port Group classifiers.  These Port Group classifiers are themselves extensions of the Port Group 
types in the MDS reference model that add Data Ports specific to the camera example. 

Once the adaptation model structure was 
completed, it was possible to examine the 
information flow through the system.  The 
information flow in the MDS control system is 
shown in Figure 12 as a collaboration diagram.  
State variables are read and updated through 
access methods. The heater switch controller 
takes heater goals as input and produces heater 
switch commands.  This controller uses the 
estimated states of the heater switches to decide 
which command to issue.  The switch estimator 
determines the state of the heater switches.  Both 
the current and the previous state value may be 
used, as shown by the SwitchEstimator accessing 
both the current and previous temperature 
estimates. 

The estimators make use of temperature measurements from the hardware adapters, temperature sensor health 
state, and heater switch state.  The estimated state is available to other estimators and to controllers through “out” 
Data Ports, namely the StateEstimatesOut Port Group.  This Port Group was refined for the heated camera example 
by creating Data Ports specific to this system.  For example, the StateEstimatesOut Port Group is refined to include a 
Data Port called Temperature_State.  Access to the current value of a state variable is represented by an immediate 
Data Port connection, while access to the previous value of a state variable is represented by a delayed Data Port 
connection. 

C. Flow Latency Analysis 
This section presents the results of performing the Analyze activity of the AADL practice framework to the 

MDS adaptation example described in the previous section.  As previously stated, one of the objectives of using a 
MB-SQA approach is to assure that certain quality attribute requirements are being achieved by the software system.  
In this example, the figure of merit “flow latency” is used to characterize the quality attribute “performance” for the 
heated camera system.  This section presents the results of analyzing the heated camera system model with respect 
to flow latency, which gives an indication of whether or not performance requirements are being met. 

Control systems process signal streams.  Often a control algorithm is sensitive to the signal stream 
characteristics.  These characteristics include the accuracy and precision of the sensor readings, bad or missing 
sensor readings, expected changes to successive values of the signal stream, the latency and age of the data in the 

 
 

Figure 11. Example MDS Adaptation Package 

 
Figure 12. Heated Camera Example Information Flow12 
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signal stream, as well as variation and jitter in latency and age.  AADL provides the capability to model end-to-end 
flows and to utilize these end-to-end flow specifications to perform end-to-end flow latency analysis. 

From a control engineer’s perspective, end-to-end flow latency is comprised of (1) processing latency to perform 
the control computation, (2) sampling latency due to over- and under-sampling, and (3) transmission latency of the 
signal from the sensor and the signal to the actuator over physical connections.  Furthermore, when a control system 
is implemented as software, several additional factors contribute to end-to-end flow latency including (1) sharing of 
processor and network resources, (2) preemptive scheduling, (3) blocking due to mutually exclusive access to shared 
logical resources such as shared data areas, (4) use of partitioned architectures, and (5) rate group optimization. 

Processing latency refers to the amount of time it takes to perform a function.  For example, the processing 
latency of a sensor is the amount of time between the detection of a signal and the corresponding response event or 
message from the sensor; in software, the processing latency of a software component refers to the amount of time it 
takes to compute the function.  This time may be bounded by its worst-case execution time, which is a value often 
used in scheduling analysis to determine schedulability. 

Sampling latency refers to the time delay that results from a task reading its input and then performing its 
computation at a specified rate.  The maximum latency contribution due to sampling is the period of the recipient. 

Control engineers are concerned with transmission latency over physical connections between the system under 
control and the control system.  They often do not take into consideration any delays in communication between the 
software components in the control system.  However, communication protocols contribute to latency as transfer 
requests from multiple sources are handled.  In some protocols, latency takes the form of queuing delays as data 
from multiple producers is queued.  In other protocols, latency takes the form of sampling delays as data ready for 
transfer must wait until its assigned slot in the protocol schedule is available. 

In addition, the runtime architecture of the embedded software has a number of latency contributors.  Preemption 
latency occurs when tasks share a resource.  For example, multiple tasks may execute on the same processor, or 
tasks may require exclusive access to a shared data area.  Typically, a deadline is specified for tasks to indicate the 
latest time since its dispatch by which it is expected to complete its execution.  In essence, the deadline represents 
the worst-case sum of processing time and preemption time.   

Partition latency occurs when different parts of the embedded application execute within different partitions, i.e., 
in different virtual machines on the same processor.  Different partitions get different time slots to execute on the 
same processor.  Communication between partitions is either non-deterministic, which results in latency jitter, or 
deterministic and therefore phase-delayed, which increases latency. 

Finally, rate group optimization is used to reduce the number of separate threads and context switching between 
these threads by placing logical threads with the same rate in the same operating system thread.  Consequently, the 
execution order of logical threads changes.  If the logical threads communicate through shared variables, a change in 
the execution order may change what was intended to be mid-frame communication into phase-delayed 
communication thereby increasing the latency of the data being communicated. 

The SEI has developed a flow latency analysis framework for AADL models that utilizes end-to-end flow 
specifications and knowledge about the control application execution.13  This framework consists of a collection of 
application threads executing at a given rate and communicating their results via different communication 
mechanisms.  This implementation of the flow latency analysis capability in OSATE was applied to the MDS 
adaptation models of the heated camera 
system. 

An End-to-End Flow declaration 
TemperatureResponse was defined to 
represent a signal from the temperature 
sensor through the control system to the 
switch actuator device.  This provides a 
measure of the time between the sensing of a 
switching threshold temperature and the 
reception of a command to turn the heater on 
or off by the switch actuator.  The path is 
defined as an end-to-end flow through the 
MDSControlSystem of the heated camera, 
originating at the TemperatureSensor Device 
within the camera hardware 
(MDSSystemUnderControl) and ending in the 
HeaterSwitch Device within the camera 

 
Figure 13. The TemperatureResponse Flow through the 

Heated Camera Adaptation Model 
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hardware (MDSSystemUnderControl).  Figure 13 depicts the application of the TemperatureResponse flow 
specification to the MDS adaptation models of the heated camera system. 

The flow through the MDSControlSystem has been specified using the “flows” keyword as shown in Figure 11.  
A flow specification indicates the flow from a component input to one of its outputs without having to expose or 
know its implementation.  Flow specifications can have properties such as latency. 

In the case of the MDSControlSystem, a component implementation with subcomponents was modeled and is 
shown in Figure 7.  The component implementation declaration includes a flow implementation, which indicates 
how the flow specification is realized through the subcomponents.  Figure 13 depicts the realization of the 
TemperatureResponse flow specification through the components of the MDSControlSystem.  The flow starts with 
the sensor reading going to and through (1) the sensor hardware adapters, (2) the state estimators, (3) state control, 
(4) the actuator hardware adapters, and (5) finally ends with the actuator command output.  The individual flow 
specifications have a latency Property associated with them that indicate the latency contributed by the component. 

In the adaptation model of the heated camera system, the end-to-end flow declaration TemperatureResponse is 
elaborated by expanding the flow specification of the MDSControlSystem by its flow implementation.  This 
expanded end-to-end flow is then interpreted by the flow latency analysis capability in OSATE.  The latency 
analyzer calculates the end-to-end latency taking into account latency contributions by the runtime architecture as 
well as the computing hardware.  It compares the results of this analysis with the expected latency property value of 
the end-to-end flow specification.  Figure 14 shows how OSATE uses the Eclipse marker mechanism and problem 
view to report results to the user.  This figure shows two error reports indicating that the calculated end-to-end 
latency has exceeded the expected latency.§§  

V. Conclusion 
Model-based software quality assurance (MB-SQA) provides a rigorous framework for the verification and 

validation of software systems through the systematic modeling and analyses of formal architecture representations.  
MB-SQA provides V&V and IV&V personnel with the capability of formally demonstrating that the architecture of 
their embedded software system meets quality attribute requirements.  These quality attribute requirements are 
codified as Figures of Merit, or FOMs, which are measurable system properties that give an indication of how well 
the architecture addresses a particular quality attribute.  This paper specifically addressed the application of the 
AADL quality assurance practice framework that utilizes the SAE Architecture Analysis and Design Language and 
supporting toolset OSATE for performing MB-SQA on embedded software systems. 

This paper described the process of applying the AADL quality assurance practice framework to JPL’s Mission 
Data System (MDS) reference architecture.  The MDS is a unified reference architecture for space-mission flight, 
ground, and test systems.  In the case study, the AADL assurance practice framework and several AADL-based 
analyses were applied to the evaluation of critical quality attributes of the MDS reference architecture as well as an 
MDS adaptation for the control of a heated camera. 

As demonstrated in the paper, AADL can be used to effectively model key MDS architectural themes such as 
state-based control, the separation of estimation and control and the separation of data management and data 
transport, as well as top-level MDS constructs such as state estimators, state controllers, and hardware adapters.  The 
ability to model these architectural themes and constructs provides the foundation for analyzing the MDS reference 

                                                        
§§ Note that illustrative values were used for this model and the results are not indicative of the results for any 
existing MDS implementation. 

 
Figure 14. Flow Latency Analysis Results for the TemperatureResponse Flow 
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architecture as well as adaptations of the MDS with respect to FOMs that give an indication of critical quality 
attributes. 

The case study described in this paper involved modeling both the MDS reference architecture and an adaptation 
of the MDS as applied to the temperature control of a camera mounted on a fixed platform, which is a typical 
control problem on board a spacecraft.  The quality attribute of interest was performance, and the specific FOM used 
to give an indication of performance was flow latency.  The models of the reference architecture and adaptation 
were analyzed with respect to flow latency in order to ensure that the quality concern of performance was addressed. 

It should be noted that these models can also be analyzed with respect to other figures of merit representative of 
performance such as scheduling and workloads as well as other quality attributes such as security and reliability.  
Future work in MB-SQA using the AADL assurance practice framework aims at exploring these other figures of 
merit and quality attributes. 

In summary, the results of the case study demonstrate the utility of the practice framework and the AADL-based 
analyses in addressing (1) the modeling of key architectural themes for a reference architecture and (2) quality 
assurance with respect to performance, particularly flow latency. 
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